在使用本系统时, 使用方必须在国家相关法律法规范围内并经过国家相关部门的授权许可, 禁止用于一切非法行为。使用用途仅限于测试、实验、研究为目的, 禁止用于一切商业运营, 本团队不承担使用者在使用过程中的任何违法行为负责
免责声明:本资源并未取得原始权利人的授权,不可商用,仅学习和研究软件内含的设计思想和分析底层代码以及原理等,禁止用于商业行为。如因擅自商用引起的相关纠纷及法律责任,由使用人全部承担。支持正版,人人有责,请于下载后24小时内删除,谢谢支持!


第1章 课程介绍
本章首先介绍本课程是什么,有什么特色,能学习到什么,内容如何安排,需要什么基础,是否适合学习这门课程等。然后对数据分析进行概述,让大家对数据分析的含义和作用有一个整体的认知,让大家对自己接下来要做的事情,有一个基本的概念与了解。…

第2章 数据获取
数据从哪里来?怎么来?这一章,我们会介绍数据获取的一般手段。主要包括数据仓库、抓取、资料填写、日志、埋点、计算等手段。同时,我们也会介绍几个常用的数据网站,供大家参考与学习。

第3章 单因子探索分析与数据可视化
有了数据,如何上手?这一章,我们会介绍探索分析的一部分—单因子探索分析和可视化的内容。我们会以基础的统计理论知识为切入点,学习异常值分析、对比分析、结构分析、分布分析。同时,引入接下来几章都会用到的案例-HR人力资源分析表,并用理论与可视化的方法,完成对此表的初步分析。…

第4章 多因子探索分析
上了手,然后呢?这一章,我们介绍探索分析的另一部分—多因子复合探索分析。我们同样以基础的统计知识为切入点,学习多因子间互相影响与配合的分析方法,如交叉分析、分组分析、相关分析、成分分析等。同时,以HR人力资源分析表为例,进行进一步的探索。…

第5章 预处理理论
数据已了解,用起来!不着急,先加工。这一章,我们会介绍特征工程的主要内容,重点会介绍数据清洗和数据特征预处理的主要内容,包括数据清洗、特征获取、特征处理(内含对指化、归一化、标准化等)、特征降维、特征衍生。预处理的好坏,直接影响着接下来模型的效果。…

第6章 挖掘建模
把数据用起来!这一章,我们会介绍数据挖掘与建模的主要内容。主要包含五类模型的建立与实践,分别为:分类模型(KNN、朴素贝叶斯、决策树、SVM、集成方法、GBDT……),回归模型与回归思想分类(线性回归、逻辑斯特回归【也叫罗吉回归,逻辑回归。音译区别】、神经网络、回归树),聚类模型(K-means、DBSCAN、层次聚类、…

第7章 模型评估
哪个模型好?上一章,我们学习了很多模型,一个数据集,可能用多种模型都可以进行建模,那么哪种模型好,就需要有些指标化的东西帮我们决策。这一章,我们会介绍使用混淆矩阵和相应的指标、ROC曲线与AUC值来评估分类模型;用MAE、MSE、R2来评估回归模型;用RMS、轮廓系数来评估聚类模型。…

第8章 总结与展望
这一章,我们将回顾本课程的全部内容,并从多个角度,重新看待我们的数据分析工作。最后,我们会了解到,学习了这门课程以后,还可以在哪些方面进行发展。

    本站所有资源版权均属于原作者所有,这里所提供资源均只能用于参考学习用,请勿直接商用。若由于商用引起版权纠纷,一切责任均由使用者承担,更多说明请参考 VIP介绍。

    最常见的情况是下载不完整: 可对比下载完压缩包的与网盘上的容量,若小于网盘提示的容量则是这个原因。这是浏览器下载的bug,建议用百度网盘软件或迅雷下载。 若排除这种情况,可在对应资源底部留言,或联络我们。

    对于会员专享、整站源码、程序插件、网站模板、网页模版等类型的素材,文章内用于介绍的图片通常并不包含在对应可供下载素材包内。这些相关商业图片需另外购买,且本站不负责(也没有办法)找到出处。 同样地一些字体文件也是这种情况,但部分素材会在素材包内有一份字体下载链接清单。

    非常抱歉,本站只能确保亲测源码是完整,其他转载源码无法保证,但都不提供任何免费技术咨询,如无法接受请不要开通本站会员

    可以100%下载全站源码资源的,除部分失效资源和商业源码,失效的可以联系客服尝试恢复

    如果您已经成功付款但是网站没有弹出成功提示,请联系站长提供付款信息为您处理(发送至邮箱:support@dxym.cc),24小时内补发

    源码素材属于虚拟商品,具有可复制性,可传播性,一旦授予,不接受任何形式的退款、换货要求。请您在购买获取之前确认好 是您所需要的资源