在使用本系统时, 使用方必须在国家相关法律法规范围内并经过国家相关部门的授权许可, 禁止用于一切非法行为。使用用途仅限于测试、实验、研究为目的, 禁止用于一切商业运营, 本团队不承担使用者在使用过程中的任何违法行为负责
免责声明:本资源并未取得原始权利人的授权,不可商用,仅学习和研究软件内含的设计思想和分析底层代码以及原理等,禁止用于商业行为。如因擅自商用引起的相关纠纷及法律责任,由使用人全部承担。支持正版,人人有责,请于下载后24小时内删除,谢谢支持!

第1章 实验环境的搭建
本章将主要介绍Anaconda和Jupyter Notebook。包括如何在windows,Mac,linux等平台上安装Anaconda,以及Jupyter Notebook的基本启动使用方法。
第2章 Numpy入门
本章将介绍Python数据科学领域里最基础的一个库——Numpy,回顾矩阵运算基础,介绍最重要的数据结构Array以及如何通过Numpy进行数组和矩阵运算。
第3章 Pandas入门
本章将介绍Python数据科学领域用于数据分析最重要的一个库——Pandas。将从pandas里最重要的两种数据结构Series和DataFrame开始,介绍其创建和基本操作,通过实际操作理解Series和DataFrame的关系。
第4章 Pandas玩转数据
本章是Pandas的进阶。我们会使用Pandas进行高级的数据分析操作,包括如何去做数据清洗、预处理和排序等数学计算,数据的分箱技术,分组技术,聚合技术,以及透视表等。
第5章 绘图和可视化之Matplotlib
数据的可视化是数据分析领域里非常重要的内容。本章会学习Matplotlib的基本使用,包括如何对Pandas里的Series和DataFrame绘图, 以及图形样式和显示模式的设置等内容。
第6章 绘图和可视化之Seaborn
Seaborn是对Matplotlib的进一步封装,其强大的调色功能和内置的多种多样的绘图模式,使之成为当下最流行的数据科学绘图工具。本章将介绍Seaborn的基本使用,以及和matplotlib的功能对比。
第7章 数据分析项目实战
通过前六章的学习,我们基本上掌握了数据分析领域里主要工具的使用,本章将通过一个股票市场的分析实战项目,和大家一起用学过的知识去分析数据,进而得到有用的信息。
第8章 课程总结
本章的总结不是对前面8章内容的汇总,而是给大家指明了一条继续学习和锻炼的道路。希望大家坚持练习,早日修成正果。
1.本资源并未取得原始权利人的授权,不可商用,仅学习和研究软件内含的设计思想和分析底层代码以及原理等,禁止用于商业行为。如因擅自商用引起的相关纠纷及法律责任,由使用人全部承担。支持正版,人人有责,请于下载后24小时内删除
2. 本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长(
[email protected]
)!3. 分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
4. 不得使用于非法商业用途,不得违反国家法律。否则后果自负!
5. 本站提供的源码、模板、插件等等其他资源,都不包含技术服务请大家谅解!
6. 如有链接无法下载、失效或广告,请联系管理员处理!(请使用注册邮箱反馈至
[email protected]
,24小时内补链)7. 本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!
8.在使用本系统时,使用方必须在国家相关法律法规范围内并经过国家相关部门的授权许可,禁止用于一切非法行为。使用用途仅限于测试、实验、研究为目的,禁止用于一切商业运营,本团队不承担使用者在使用过程中的任何违法行为负责。
9.根据2013年1月30日《计算机软件保护条例》2次修订第17条规定: 为了学习和研究软件内含的设计思想和原理,通过安装、显示、传输或者存 储软件等方式使用软件的,可以不经软件著作权人许可,不向其支付报酬! 鉴于此,也希望大家按此说明研究软件!